Brief Communications Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization
نویسندگان
چکیده
Many aspects of brain processing are intimately linked to brain rhythms. Essentially all classical brain rhythms, i.e., delta, theta, alpha, beta, and sleep waves, are highly heritable. This renders brain rhythms an interesting intermediate phenotype for cognitive and behavioral traits. One brain rhythm that has been particularly strongly linked to cognition is the gamma rhythm: it is involved in attention, shortand long-term memory, and conscious awareness. It has been described in sensory and motor cortices, association and control structures, and the hippocampus. In contrast to most other brain rhythms, the gamma frequency highly depends on stimulus and task conditions, suggesting a low heritability. However, the heritability of gamma has not been assessed. Here, we show that visually induced gamma-band synchronization in humans is strongly genetically determined. Eighty twin subjects (20 monozygotic and 20 dizygotic twin pairs) viewed a moving sinusoidal grating while their brain activity was recorded using magnetoencephalography. The stimulus induced spectrally confined gamma-band activity in sensors over visual cortex in all subjects, with individual peak frequencies ranging from 45 to 85 Hz. Gamma-band peak frequencies were highly correlated across monozygotic twins (r 0.88), but not across dizygotic twins (r 0.32) or unrelated subjects (r 0.02). This implies a heritability of the gamma-band frequency of 91%. This strong genetic determination suggests that gamma-related cognitive functions are under close genetic control.
منابع مشابه
Magnetoencephalography in Twins Reveals a Strong Genetic Determination of the Peak Frequency of Visually Induced Gamma-Band Synchronization
متن کامل
Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced γ-band synchronization.
Many aspects of brain processing are intimately linked to brain rhythms. Essentially all classical brain rhythms, i.e., delta, theta, alpha, beta, and sleep waves, are highly heritable. This renders brain rhythms an interesting intermediate phenotype for cognitive and behavioral traits. One brain rhythm that has been particularly strongly linked to cognition is the gamma rhythm: it is involved ...
متن کاملVisually induced gamma-band activity predicts speed of change detection in humans
Groups of activated neurons typically synchronize in the gamma-frequency band (30-100 Hz), and gamma-band synchronization has been implicated in numerous cognitive functions. Those functions are ultimately expressed as behavior and therefore, functional gamma-band synchronization should be directly related to behavior. We recorded the magnetoencephalogram in human subjects and used a visual sti...
متن کاملMEG sensor and source measures of visually induced gamma-band oscillations are highly reliable
High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical r...
متن کاملSpatial attention modulates visual gamma oscillations across the human ventral stream
Oscillatory synchronization in the gamma frequency range has been proposed as a neuronal mechanism to prioritize processing of relevant stimuli over competing ones. Recent studies in animals found that selective spatial attention enhanced gamma-band synchronization in high-order visual areas (V4) and increased the gamma peak frequency in V1. The existence of such mechanisms in the human visual ...
متن کامل